
On the probability distribution of the end-to-end vector of a polymer chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 L381

(http://iopscience.iop.org/0305-4470/16/11/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) L381-L384. Printed in Great Britain 

LETTER TO THE EDITOR 

On the probability distribution of the end-to-end vector of 
a polymer chain 

Marios K Kosmas 
Chemistry Department, University of Ioannina, Ioannina, Greece 

Received 23 May 1983 

Abstract. We calculate the fourth and sixth moments of the probability distribution of 
the end-to-end vector of a polymer chain, close to the critical dimensionality 4. The 
results support that the excluded volume interactions do not change the Gaussian structure 
of the probability for large distances. Depending on the value of the excluded volume 
parameter U‘, an expansion or a shrinkage to this probability occurs even for the dimension- 
ality 4. 

For a linear flexible polymer chain consisting of N + 1 beads joined with N bonds, 
the probability distribution P({r i } )  for the positions r i  (i = 1,2,  . . . , N + 1) of t k  beads 
can be written in d dimensions as 

i + i  

In (l), 1 is an effective unit length and the prefactor [ d / ( 2 ~ r ? N ) ] ~ ~ ’ ~  comes from the 
normalisation constants of the ideal distributions of the N bonds. The excluded 
volume parameter U ’  can be written in terms of the mean potential between the beads 
(Yamakawa 1971), and it can take zero, positive or negative values depending on 
whether we are in an ideal, a good or a poor solvent respectively. The probability 
distribution P ( R , N )  for the end-to-end vector R can be taken from P({r i } )  if we 
integrate in the positions ri of all beads, except the first and the last ones which we 
fix, say, at the origin rl = 0 and at the position R, rN+1 = R, 

P(R, N) = J ddriP({ri})Sd(rl)Sd(R - r N + I ) .  (2) 
i = l  

In the absence of excluded volume effects (U’ = 0), the model is exactly solvable and 
yields for the probability P(R, N )  the Gaussian form 

(3) 
Turning on the excluded volume interactions ( U ’  f 0), the conformational behaviour 
of the chain is changed, and an interesting question is how the excluded volume 
parameter U ’  affects the structure of the probability. Previous studies for the good 
solvent region where u’>O (Fisher 1966, McKenzie 1973, Des Cloizeaux 1974, Oono 
et ul 1981) were based on the assumption that the probability is not Gaussian and 
calculated the characteristic of such distributions. We are going to chase an analogous 

Po(R, N )  = [d/(2n12N)] exp[-dR2/(212N)]. 
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task in this work and determine the structure of the probability for both good and 
poor solvents, close to the dimensionality 4. 

Recently we have used second-order perturbation theory (Kosmas 1981) and we 
have calculated the zeroth and second moments of the probability P(R, N), close to 
the critical dimensionality d = 4, as 

C = CL ,” I ddR P(R, N )  = /I exp(-2uN){ 1 + 2u In N + [ ( u E / ~ )  - 6u ’3 ln’ N + . . .}, (4) 

(R’) = I ddR P(R, N ) R 2 / I  ddR P(R, N) 

=Nf2{1 +2u In N + [ ( u E / ~ )  -6u2] In’ N +. . .}, 
2 d / Z  I ~ = 4 - d ,  U =[d/(27rf )] U . 

The exponentiation of these series gave the fixed point value of U as U *  = ~ / 1 6 ,  so 
that the average quantities can be written at the fixed point as 

C = p r  exp(-~N/8)N‘/*, (6 )  

(R  ’) - N1+E/8. (7) 

In this way the critial exponents can be found to order E. By means of third-order 
calculations (Kosmas 1982) we have realised that the infinite series sum up to known 
analytical expressions, capable of being determined from second-order perturbation 
theory. The analytical expressions for C and (R ’) are 

C = ~ ~ r e x p ( - 2 u N ) ( l + 8 u  1nN)’I4, (8) 

and describe properly both the good solvent region (U > 0), where the meaning of the 
critical exponents is valid, and also the poor solvent region ( U  < O), where the shrinkage 
of the chain starts. In this work we calculate the next two moments (R4) and (R6)  in 
an effort to see the structure of the probability close to the critical dimensionality 4, 
for large distances and for both the good and the poor solvents. 

Combining (1) with (2) we can write for the probability P(R,N), up to second 
order in U ’  and in the Fourier K’ space, the expression 

&K’, N )  = (1/27r)d/2 J ddR exp(iK‘R)P(R, N )  

N - 1  N 

= ( 1 / 2 ~ ) ~ / ~ [  exp(-Nf2K”/2d)-2u1 [ d / 2 d z ( j  --i)ld/’ 
i = l  j = i + l  

X exp[-(N - j  + i)12K”/2d] 
N - 3  N-2 N - l  

+4u” 1 1 2 {[d/27rf2(i-i)ld/’ 
i = l  j = i + l  k = j + l  m = k + l  

x [d/2.rrfz(m - k) ld l2  exp[-(N - m + k - j  +i)f2K”/2d] 

+ [d/2.rr12(k - j ) I d I 2  

x [d/27rf2(m - k + j  -i)ld/’ exp[-(N - m + i)f2K”/2d] + ( d / 2 ~ f ’ ) ~  
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X (11/2+/1/3+/2/3)-d'Z exp[-(N - I l  -12-/3+/dr'Kr2/2d]}], 

II = j - i ,  I 2 = k - j ,  1 3 = m - k ,  1;' =I; '  +I;'+I; ' .  (10) 

The KfZn th component of &K', N) yields the 2nth moment of the probability P(R, N). 
P(K', N) can be written in a diagrammatic language as 

a3 

P(K, N )  = (1/2.rr)d/2 (-1)"K2"Czn/n !, 
n = O  

with 

where U = ( d / 2 ~ 1 ~ ) ~ ' ~ ~ ' ,  K 2  = K"I2/2d. The diagrams of (12) are defined as: 

= N", (13a) 

N - 3  N - 2  N - 1  N 

= ,e 1 1 ( j  - i ) - d / 2 ( m  - /c)-~ '~(N - m + k - j + i)", U3C) 
r = l  j = i + l  k = j + l  m = & + t  

N - 3  N - 2  N - 1  N 
= (k -j)-d'2(m - k + j - i)-d'2(N - m + i)", ( 1 3 4  8 i = l  j = i + l  k = j + t  m = k + t  

The values of these diagrams have been calculated up to n = 3 in the same way as 
before (Kosmas 1981). Their values are quoted in table 1. Substituting these 
expressions in (12) we take for the coefficients C2, the following expressions: 

Co=exp(-2uN){l+2u lnN+[(uE/2)-6u2]ln2N+. . .}, (14a) 

C4=C&'[1+4u lnN+(uE -8u2) ln2N+.  . .I, 
C2 = C&{1+ 2u In N +[(ue/2) -6u2] In2 N +. . .}, (146) 

(14c) 

c f3=C&3( l+6~  lnN+[(3uE/2)-6u2]ln2N+. . .}. ( 1 4 4  

The first thing to notice is that the exponentiation condition, that is the requirement 
that the half of the square of the first term be equal to the second-order term, yields 
the same fixed point value U *  = ~ / 1 6  for all four series. Using this value for U, the 
critical exponents for these four moments can be determined to order E as 

These expressions reveal that the exponents of the higher moments are multiples of 
the exponent of the second moment. The knowledge of the coefficients of the first- 
and second-order terms (14) is capable of determining the closed analytical expressions 
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Table 1. 

0 N-InN-$eln2N $N2-2N In N +In2 N N In N -In2 N -f 
N2-2N In N -$EN In2 N 
N2-3N2 In N -2&N2 In2 N 

N 2  In N - 2N In2 N 
N' In N - 3 N 2  In2 N 

of these moments (Kosmas 1982) as 

CO = exp(-2uN)(1+8u In C2 = C&(1+8u In N)1/4, ( 1 6 0 )  

(16c) 

(16d) 

These analytical expressions describe both the good solvent region (U > 0) where the 
meaning of the exponents is valid (15), but also the poor solvent region where the 
chain collapses. Substituting these results in (1 1) we take that F(K, N) is Gaussian 
up to order K6: 

(17) 

The probability P(R, N) for large IR 1's is given by the inverse Fourier transform of 
(17) as 

P(R, N) = ( 1 / 2 ~ ) ~ / ~  I ddK' exp(-iK'R)P(K', N) 

C4 = CrJV2( 1 + 8u In N)2/4 

c6 = ca3(1 + 8u In N ) ~ ' ~ ,  In N = lim (~/E)(N"/ '  - 1). 
E -0 

P(K, N) = ( 1 / 2 ~ ) ~ / ~ C ,  exp[-K2N(1 +8u In N)1/4], K 2  = KI2l2/2d. 

= C0[d/2.nf2N(1 +8u In N)1'4]d/2 exp[-dR2/2f2N(1 +8u In N)'I4] 

= Co(d/2r(R >) exp(-dR2/2(R2>), large IR I. (18) 2 d / 2  

This Gaussian structure is determined from the sole knowledge of its second moment 
( R 2 ) ,  equation (9), and is expanded or shrunk depending on whether u > 0 or u < 0. 
This character persists even for the critical dimensionality d = 4. 
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